
5 Integration

5.1 Integration revisited

If the derivative of the function F (x) is f(x), namely F ′(x) = f(x), then F (x) is called an antiderivative of f(x).

Any two antiderivatives of f(x) differ only by a constant, thus we introduce the notion of indefinite integral, and
the following notation: ∫

f(x) dx = F (x) + C.

Each differentiation formula naturally leads to an integration formula:

d

dx
(xn) = nxn−1

∫
xn dx =

xn+1

n+ 1
+ C, for n 6= −1

d

dx
(ex) = ex

∫
ex dx = ex + C

d

dx
(ax) = ax ln a, for a > 0, a 6= 1

∫
ax dx =

ax

ln a
+ C, for a > 0, a 6= 1

d

dx
(lnx) =

1

x

∫
1

x
dx = ln |x|+ C

d

dx
(sinx) = cosx

∫
cosx dx = sinx+ C

d

dx
(cosx) =

∫
sinxdx =

d

dx
(tanx) = sec2 x

∫
dx = tanx+ C

d

dx
(cotx) =

∫
dx =

d

dx
(secx) =

∫
dx = secx+ C

d

dx
(cscx) =

∫
dx =

(�)
d

dx

(
sin−1 x

)
=

∫
dx = sin−1 x+ C

(�)
d

dx

(
cos−1 x

)
=

∫
dx =

d

dx

(
tan−1 x

)
=

∫
1

x2 + 1
dx =∫

f(x) dx = F (x) + C

∫
f(ax+ b) dx =

F (ax+ b)

a
+ C

Exercise 29.

1. Evaluate the following indefinite integrals.

(a) y =

∫
2

3x− 1
dx

(b) y =

∫
e2x+3 dx

(c) y =

∫
2

4x2 + 3
dx

(d) y =

∫
sin 2xdx

(e) y =

∫
cos2 xdx

2. The gradient at any point (x, y) on a curve is 4x3 − 6x + 1. The curve passes through the point (−1, 4). Find
the equation of the curve.



5.2 Definite integrals (with formal treatment) [ EXTRA ]

The development of the note of the definite integral originated from the needs in many practical situations, such as
evaluating the area of a given region, evaluating the arc length on a certain curve, and calculating the displacement
of an object whose velocity changes over time, etc.

Given the curve with equation y = x2, find the area under the curve, between the lines x = 0 and x = 1.

(�) Now let us generalize this idea by investigating a function f(x) on a closed interval [a, b], where a < b.

Define a partition P as a finite sequence of points in this interval such that,

a = x0 < x1 < x2 < · · · < xn = b,

denote the width of each sub-interval [xk−1, xk] by ∆xk = xk − xk−1, and denote the maximum of these widths by

λ = max
1≤k≤n

(∆xk).

We then take, in each sub-interval, an arbitrary point ξk, and sum up the areas of all the small rectangles to obtain
the total area:

S(P ; ξk) =

n∑
k=1

f(ξk)∆xk.

This S(P ; ξk) is called a Riemann sum of f(x) with respect to the partition P , which is an approximation to the
area under the curve over the interval [a, b]. It can be seen that such a Riemann sum depends on both the partition P
and the points ξi chosen in the sub-intervals. However, it is obvious that the actual area is independent of such choices.

When the widths of the sub-intervals become sufficiently small, the Riemann sum is expected to approach the actual
area. Hence we define the definite integral (or Riemann integral) of the function f(x) over the interval [a, b] as
the limit of the Riemann sums as the maximum width λ approaches 0:∫ b

a

f(x) dx = lim
λ→0

n∑
k=1

f(ξk)∆xk.

(�) The existence of this limit leads to the issue of integrability. This is something way too beyond this course.



Now we return to the area under the curve y = x2 over the interval [0, 1].

To make it simpler, we can use partitions with n sub-intervals of equal length: ∆xk = 1
n , and xk = k

n .

Furthermore, within each sub-interval [xk−1, xk], the point ξk is chosen to be the right endpoint, namely xk. Then
the Riemann sum becomes:

Sn =

n∑
k=1

f(ξk)∆xk

=

n∑
k=1

x2k ·
1

n

=

n∑
k=1

1

n

(
k

n

)2

=
1

n3

n∑
k=1

k2

=
1

n3
· n(n+ 1)(2n+ 1)

6
(result of the summation is used without proof here)

=
2n2 + 3n+ 1

6n2

⇒
∫ 1

0

x2 dx = lim
n→∞

2n2 + 3n+ 1

6n2
(λ = ∆xk = 1

n ; λ→ 0 means n→∞)

=
1

3
.

Exercise 30.

(�) By applying the same technique, evaluate the integral∫ 3

−1

(
1
2x+ 1

)
dx.

You may want to verify your answer by finding the corresponding area geometrically.



5.3 Fundamental theorem of calculus [ EXTRA ]

Taking limits is always something difficult, so we now intuitively introduce the fundamental theorem of calculus.

Given that f(x) is a continuous function over the interval [a, b], and that F (x) is an antiderivative of f(x), then

∫ b

a

f(x) dx = F (x)

∣∣∣∣∣
b

a

= F (b)− F (a).

By employing this theorem, we can solve the previous problem in a much quicker way:∫ 1

0

x2 dx =
x3

3

∣∣∣∣1
0

=
1

3
− 0 =

1

3
.

Given a function f(x) and real numbers a, b and c, note that∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx,

and that ∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Try to explain these two equations geometrically.

Exercise 31.

Apply the fundamental theorem of calculus to evaluate the following definite integrals.

1.

∫ 2

1

(
x+

1

x

)3

dx

2.

∫ 1

0

e2x−1 dx

3.

∫ π

0

sin
x

2
dx

4.

∫ π
4

0

cos2 3x dx

5.

∫ 1
2

0

1

4x2 + 1
dx

6.

∫ 1

−1

1

x
dx

(The last question relates to the next section.)



Exercise 32.

1. Find the area of the region enclosed by y = sinx and y = 2
πx in the first quadrant.

2. Find the area of the region enclosed by the curve y =
1

x
and the line 2x+ 3y = 7 in the first quadrant.

3. (�) Two functions

F (a) =

∫ a

0

1

x2 + 1
dx and G(a) =

∫ a

0

1

x+ 1
dx,

are defined for a > 0. Find the maximum value of F (a)−G(a).

4. The curve y = f(x) has a stationary point at (0, 3) and it is given that f ′′(x) = e
x
2 .

(a) Find f(x).

(b) Find the nature of this stationary point.

5. (�) Show that (for t > 0)

(a)

∫ 1

0

1

(1 + tx)2
dx =

1

1 + t
,

(b)

∫ 1

0

−2x

(1 + tx)3
dx = − 1

(1 + t)2
.

Noting that the right hand side of (b) is the derivative of the right hand side of (a), conjecture the value of∫ 1

0

6x2

(1 + x)4
dx.

6. (�) Evaluate the integral ∫ 1

0

(x+ 1)k−1 dx

in the cases k 6= 0 and k = 0. Hence deduce that lim
k→0

2k − 1

k
= ln 2.

7. (�) Prove the identities cos4 θ − sin4 θ ≡ cos 2θ and cos4 θ + sin4 θ ≡ 1− 1
2 sin2 2θ. Hence evaluate∫ π

2

0

cos4 θ dθ and

∫ π
2

0

sin4 θ dθ.

Evaluate also ∫ π
2

0

cos6 θ dθ and

∫ π
2

0

sin6 θ dθ.

8. (�) Find the maximum value of the function

f(x) =

∫ x

0

1− t
1 + t

dt,

for x > 0.

9. (�) Find the derivative of the function

f(x) =

∫ x2

0

ln(u+ 1) du.



5.4 Improper integrals

Type I: unbounded function values. For example:

∫ 1

0

dx√
x

.

Type II: unbounded integrating intervals. For example:

∫ +∞

1

dx

x2
.

Exercise 33.

1. Discuss whether the following improper integrals are finite, in different cases that arise according to the values
of the positive constant p. ∫ 1

0

1

xp
dx;

∫ +∞

1

1

xp
dx.

2. Evaluate the improper integrals

∫ +∞

1

e3−2x dx.

3. Determine whether the area under the curve of y = tan2 x, between x = 0 and x = 1
2π, is finite or infinite.

4. (�) It is given that f(x) =
1

1 + x2
, for x ≥ 0.

(a) Sketch the graph of f(x).

(b) Find the equation of the line passing through the point (0, 1) and is tangent to the graph of f(x) at another
point. Prove that there are no further intersections between the line and the curve.

(c) By comparing the areas under the graph of f(x) and under this tangent line, prove that π > 3.

(d) By comparing the improper integrals∫ +∞

1

f(x) dx and

∫ +∞

1

1

x2
dx,

prove that π < 4.

(e) Given that tan 1
3π =

√
3 and that tan 5

12π = 2 +
√

3, obtain two more (better) upper bounds of π, by
comparing similar pairs of improper integrals.

(f) By expanding f(x) as a power series:
1

1 + x2
= 1−x2 +x4−x6 +x8−x10 + · · · , and then integrating over

the interval [0, 1], show that

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · = π

4
.



5.5 Volume of revolution

When the region under the graph of y = f(x) between x = a and x = b (where a < b) is rotated about the x-axis, the
volume of the solid of revolution formed is ∫ b

a

πy2 dx =

∫ b

a

π (f(x))
2

dx.

When the region bounded by the (monotonic) curve with equation y = f(x) between the lines y = c and y = d (where
c < d) is rotated about the y-axis, the volume of the solid of revolution formed is∫ d

c

πx2 dy.

Such an integral is usually evaluated by first expressing x in terms of y.

(�) One special case is that a decreasing curve cuts the x-axis at (a, 0) and the y-axis at (0, b), where both a and
b are positive. When rotating the region enclosed by the curve and the x- and y-axes in the first quadrant, about the
y-axis, the volume of revolution can be found by both formulae:∫ b

0

πx2 dy, and

∫ a

0

2πxy dx.

This can be proved later by the method of integration by parts.

Exercise 34.

1. Find the volume generated when the region under the graph of f(x) between x = a and x = b is rotated
completely about the x-axis, leaving your answers as multiples of π.

(a) f(x) = x+
1√
x

; a = 1
4 , b = 1

(b) f(x) = e2x−1; a = 0, b = 1

(c) f(x) = cosx; a = − 1
2π, b = 1

2π

(d) f(x) = tanx; a = 1
4π, b = 1

3π

2. Find the volume of revolution generated by rotating the region bounded by the curve with equation y = e−x

and the x- and y-axes, through 360◦ about the x-axis.

3. (�) A torus is formed when the interior of a circle with equation x2 + (y − r)2 = a2, where r and a are
parameters such that r > a > 0, is rotated completely about the x-axis. Find the volume of the torus, giving
your answers in terms of π, a and r.

4. Find the volume generated when the region bounded by the graph of f(x) between y = c and y = d is rotated
completely about the y-axis, leaving your answers as multiples of π.

(a) f(x) = arctanx; c = 0, d = π
3

(b) (�) f(x) =
1− x
2 + x

; c = 0, d = 1
2 (Try to use two different methods to solve this question.)



5.6 Integration by partial fractions

Exercise 35.

1. Find the following integrals:

(a)

∫
x2 − 4x− 6

(x− 2)(x+ 3)
dx

(b)

∫
x2 − x

(x+ 4) (x2 − 4)
dx

(c)

∫
1

1− x4
dx

(d)

∫ 1

− 1
2

1

(x+ 1)(x+ 2)(x+ 3)
dx

(e) (�)

∫ +∞

0

x

(x+ 1)(x+ 2)(x+ 3)
dx

2. The region enclosed between the graphs of y =
3

x
and x+ 2y = 7 is denoted by R. Find the volume generated

when R is rotated though four right angles about (a) the x-axis; (b) the y-axis.



5.7 Integration by substitution

The first example is rather easy:

∫
x(2x+ 1)3 dx.

You may evaluate this integral by expanding the cube and integrating term by term. However, if instead we make the

substitution: u = 2x+ 1, then x = 1
2 (u− 1). By differentiating x with respect to u, we have

dx

du
= 1

2 .

Now we write, in terms of differentials, dx =
dx

du
du = 1

2 du, and the integral reads:

∫
x(2x+ 1)3 dx =

∫ (
u− 1

2
· u3 · 1

2

)
du

=
1

4

∫ (
u4 − u3

)
du

=
1

4

(
u5

5
− u4

4

)
+ C

=
(2x+ 1)5

20
− (2x+ 1)4

16
+ C. (substitute back to x)

You may see the benefit of substitution more clearly when you work on this integral:

∫
x(2x+ 1)33 dx.

Exercise 36.

For each of the following substitutions, write dx in terms of φ(t) dt or dt in terms of ψ(x) dx, whichever you think is
simpler.

1. t = 1 + x2

2. t =
√

2x+ 1

3. t = sinx

4. x = et

5. x = ln(t+ 1)

6. t = tan
x

2

7. x2 = tan t

8. et = cosx



Worked examples:

1. Find the integral:

∫
3x
√

2x− 1 dx.

Let u =
√

2x− 1, then x =
u2 + 1

2
, and

dx

du
= u, or dx = udu. Therefore,

∫
3x
√

2x− 1 dx =

∫ (
3 · u

2 + 1

2
· u · u

)
du

=
3

2

∫ (
u4 + u2

)
du

=
3

2

(
u5

5
+
u3

3

)
+ C

=
3

10
(2x− 1)

5
2 +

1

2
(2x− 1)

3
2 + C.

You may also try to use the substitution v = 2x− 1, or even without using any substitution at all, to evaluate
this integral.

2. Find the integral:

∫
1

x+
√
x

dx.

Let u =
√
x, then x = u2, and dx = 2udu. Therefore,∫

1

x+
√
x

dx =

∫ (
1

u2 + u
· 2u
)

du

=

∫
2

u+ 1
du

= 2 ln |u+ 1|+ C

= 2 ln
∣∣√x+ 1

∣∣+ C.

3. Find the definite integral:

∫ 1

0

x2
√

1− x3 dx.

Let u = 1− x3, then du = −3x2 dx, or x2 dx = − 1
3 du.

When x = 0, u = 1; when x = 1, u = 0. It is alright to have the upper limit less than the lower limit. Hence,∫ 1

0

x2
√

1− x3 dx =

∫ 0

1

√
u ·
(
−1

3

)
du

=

(
−1

3
· u

3
2

3
2

)∣∣∣∣∣
0

1

=

(
−2

9
u

3
2

)∣∣∣∣0
1

= −2

9
· (0− 1)

=
2

9
.

For definite integrals, it is important to substitute also the upper and the lower limits. In this example we see
that sometimes it is helpful to write du in terms of φ(x) dx, where φ(x) is a factor of the original integrand.



Exercise 37.

Evaluate the following integrals:

1.

∫
esin x cosx dx

2.

∫
x
√

3− 2x2 dx

3.

∫
x2

x3 − 1
dx

4.

∫ 1

0

x

x4 + 1
dx

5.

∫ π
4

0

sin 2x cos4 xdx

6.

∫
3x3

(
x2 − 1

)5
dx

7.

∫ √
x+ 1√
x− 1

dx

8.

∫ 1

0

x2 3
√

1− xdx

9.

∫ 0

−1
x2
√

1− 3x dx

10.

∫ π
8

0

sec4 2x tan 2xdx

11. (�)

∫ 3

0

1

(1 + x)
√
x

dx

12. (�)

∫ 1

0

1√
x(1− x)

dx

13. (�)

∫
1√

x+ 3
√
x

dx

14. (�)

∫
secxdx

15. (�)

∫
1

x3 + 1
dx



5.8 Integration by parts

The formula of integration by parts (shortened as IBP) is derived from the product rule of differentiation:

(uv)′ = u′v + uv′.

Integrating both sides with respect to x yields:

uv + C =

∫
(u′v) dx+

∫
(uv′) dx.

By rearranging the terms, we can write: ∫
u

dv

dx
dx = uv −

∫
du

dx
v dx

or

∫
udv = uv −

∫
v du.

Note that there are indefinite integrals on both sides, thus it is unnecessary to include the constant ‘+C’.

Worked examples:

1. Find the integral:

∫
x sin 3xdx.

The first step is to recognize which part in the integrand is ‘u’, and which part is ‘dv’, or ‘ dvdx dx’.

Usually when we have a product of a power function (such as xn) and an exponential, sine, or cosine function
(i.e. eax, sin ax, or cos ax), we consider the power function as u, and the other part (exponential, sine, or cosine
together with dx) as dv.

On the other hand, when a power function xn is multiplied with a logarithmic function (e.g. lnx), we choose
u = lnx, and dv = xndx.

Therefore in this example, we take u = x, and dv = sin 3x dx, or
dv

dx
= sin 3x. This means that

u = 1, and v =

∫
sin 3xdx = − 1

3 cos 3x (+C).

In the following calculation, the above integration constant can be ignored. ((�) Think about why.)

Now we apply the IBP formula:∫
x sin 3xdx =

∫
udv

= uv −
∫
v du

= x ·
(
− 1

3 cos 3x
)
−
∫ (
− 1

3 cos 3x
)

dx

= − 1
3x cos 3x+ 1

3

∫
cos 3xdx

= − 1
3x cos 3x+ 1

3 ·
1
3 sin 3x+ C

= − 1
3x cos 3x+ 1

9 sin 3x+ C

2. Find the definite integral:

∫ e

1

lnx dx.

First we look at the indefinite integral:

∫
lnxdx. Set u = lnx, and dv = dx. This means du =

1

x
dx, and v = x.

Thus ∫
lnxdx = x lnx−

∫ (
x · 1

x

)
dx = x lnx−

∫
1 dx = x lnx− x+ C.

Therefore ∫ e

1

lnx dx = (x lnx− x)

∣∣∣∣e
1

= (e− e)− (0− 1) = 1.



3. Find the integral:

∫
x2e−2x dx.

Set u = x2, and dv = e−2x dx, or
dv

dx
= e−2x. This means

du = 2xdx, and v =

∫
e−2x dx = −1

2
e−2x (+C).

Now we apply the IBP formula:∫
x2e−2x dx = x2 ·

(
−1

2
e−2x

)
−
∫ (
−1

2
e−2x

)
· 2x dx

= −x
2

2
e−2x +

∫
xe−2x dx

= −x
2

2
e−2x +

∫
xd

(
−1

2
e−2x

)
= −x

2

2
e−2x + x ·

(
−1

2
e−2x

)
−
∫ (
−1

2
e−2x

)
dx (∗)

= −x
2

2
e−2x − x

2
e−2x − 1

4
e−2x + C

= −2x2 + 2x+ 1

4
e−2x + C.

Note that IBP is applied for a second time where the symbol (∗) is marked; this time the substitutions of u and
v are not explicitly expressed.

4. Find the integral:

∫
ex sinxdx.

For this integral we also need to apply IBP twice:∫
ex sinxdx =

∫
sinx d (ex) = ex sinx−

∫
ex d(sinx) = ex sinx−

∫
ex cosxdx

= ex sinx−
∫

cosx d (ex) = ex sinx− ex cosx+

∫
ex d(cosx)

= ex sinx− ex cosx−
∫

ex sinx dx

∴ 2

∫
ex sinxdx = ex sinx− ex cosx+ C ′

and

∫
ex sinx dx =

ex sinx− ex cosx

2
+ C.

One may start with ∫
ex sinxdx =

∫
ex d(− cosx)

and obtain (obviously) the same answer, still through IBP twice. Try to work out full details by yourself:



Exercise 38.

Evaluate the following integrals:

1.

∫
xe3x dx

2.

∫
x4 ln 3xdx

3.

∫
lnx

x2
dx

4.

∫ π
2

0

x sin
x

2
dx

5.

∫ π

0

x sin2 xdx

6.

∫
x2 sin 2xdx

7.

∫
e3x cos 4x dx

8.

∫ π

−π
e−x sin 3xdx

9.

∫ 1

0

tan−1 xdx

10. (�)

∫
(x lnx)

2
dx

11. (�)

∫
x3ex

2

dx

12. (�)

∫
sin 2x esin x dx

13. (�)

∫ 1

0

arcsinx√
1− x

dx



Exercise 39.

Evaluate each of the following indefinite integrals by substitution.

1.

∫
dx

x2
√

1 + x2
. Try different substitutions: (i) x =

1

t
; (ii) x = tan θ; or

(iii) first write the integrand as
1

x3
√

1 + 1
x2

, then make the substitution u = 1 +
1

x2
.

2.

∫
tan10 x sec2 x dx. Try u = tanx.

3.

∫
sin
√
x√

x
dx

4.

∫
dx

ex − e−x

5.

∫
sinx+ cosx
3
√

sinx− cosx
dx

6.

∫
dx

(arcsinx)2
√

1− x2

7.

∫
x tan

√
1 + x2√

1 + x2
dx

8.

∫
dx√

1 + e2x
. Try u =

√
1 + e2x.

9.

∫
dx

x4
√

1 + x2
. Try first substitute x = tan θ, then u = sin θ. Alternatively, try u =

x√
1 + x2

.

10.

∫ √
x− 1

x+ 1
dx. First substitute t =

√
x− 1

x+ 1
, then use partial fraction decomposition.

11.

∫
dx√

(1− x2)3

12.

∫
dx

x+
√

1− x2
. First substitute x = sin θ, then write cos θ in the numerator as

[
1
2 (sin θ + cos θ) + 1

2 (cos θ − sin θ)
]
.

13.

∫
dx

1 +
√

2x

14.

∫
dx

x
√
x2 − 1

. Try x = sec θ.

15.

∫
arctan

√
x√

x(1 + x)
dx. Try u = arctan

√
x.

16.

∫
dx

x 4
√

1 + x4
. Try u4 = 1 + x4.

17.

∫
1 + lnx

(x lnx)2
dx

Evaluate each of the following indefinite integrals by parts.

18.

∫
e
√
x+1 dx. First substitute u =

√
x+ 1.

19.

∫
x

sin2 x
dx. Hint: (cotx)′ = − csc2 x = − 1

sin2 x
.

20.

∫
arcsinxdx. First substitute u = arcsinx.

21.

∫
x2 arctanxdx



22.

∫
ln2 x dx

23.

∫
x tan2 xdx. First write tan2 x = sec2 x− 1.

24.

∫
ln3 x

x2
dx

25.

∫
cos(lnx) dx. First substitute x = eu.

26.

∫
(arcsinx)2 dx

27.

∫ √
xe
√
x dx

28.

∫
ln(x+

√
1 + x2) dx

(�) Evaluate each of the following indefinite integrals.

29.

∫
xdx√
4x− 3

Try a few alternatives.

30.

∫
dx

x( 3
√
x−
√
x)

31.

∫ √
1 + x

x
√

1− x
dx Hint: use the substitution

√
1 + x

1− x
= t

32.

∫
dx

3
√

(x− 1)2(x+ 1)4
Hint: write the integrand as

1

(x+ 1)2
·
(

3

√
x+ 1

x− 1

)2

, then substitute t = 3

√
x+ 1

x− 1
.

33.

∫
dx

4 + 4 sinx+ cosx
Hint: use the substitution t = tan x

2 .

34.

∫
ln(1 + x2) dx

35.

∫
x+ sinx

1 + cosx
dx Hint: split into two integrals, then apply IBP for one of them.

36.

∫
sin2 x

cos3 x
dx

37.

∫
dx

(1 + ex)2

38. (�) Given the following integration formulae:∫
dx√
a2 − x2

= arcsin
x

a
+ C;

∫
dx√
x2 ± a2

= ln |x+
√
x2 ± a2|+ C;∫

dx

x2 − a2
=

1

2a
ln

∣∣∣∣x− ax+ a

∣∣∣∣+ C;

∫
dx

x2 + a2
=

1

a
arctan

x

a
+ C;∫ √

a2 − x2 dx =
x

2

√
a2 − x2 +

a2

2
arcsin

x

a
+ C;∫ √

x2 ± a2 dx =
1

2

[
x
√
x2 ± a2 ± a2 ln

∣∣∣x+
√
x2 ± a2

∣∣∣]+ C;

evaluate each of the following indefinite integrals. Hint: write ax2 + bc+ c in the form of a[(x− p)2 ± q2].∫
(5x+ 3)

√
x2 + x+ 2 dx

∫
(x− 1)

√
x2 + 2x− 5 dx

∫
(x− 1) dx√
x2 + x+ 1

∫
(x+ 2) dx√
5 + x− x2



Exercise 40.

(�) Enjoy the following challenges.

1. Evaluate the following integrals, in different cases that arise according to the value of the positive constant a:

(a)

∫ 1

0

1

x2 + (a+ 2)x+ 2a
dx;

(b)

∫ 2

1

1

u2 + au+ a− 1
dx.

2. Show, by means of a suitable change of variable, that∫ ∞
0

f(
√
x2 + 1 + x) dx =

1

2

∫ ∞
1

(1 + t−2)f(t) dt.

Hence show that ∫ ∞
0

(
√
x2 + 1 + x)−3 dx =

3

8
.

3. Let

I =

∫ a

0

cosx

sinx+ cosx
dx and I =

∫ a

0

sinx

sinx+ cosx
dx,

where 0 ≤ a < 3
4π. By considering I + J and I − J , show that 2I = a+ ln(sin a+ cos a).

Find also:

(a)

∫ π
2

0

cosx

p sinx+ q cosx
dx, where p and q are positive numbers;

(b)

∫ π
2

0

cosx+ 4

3 sinx+ 4 cosx+ 25
dx.

4. Differentiate sec t with respect to t.

(a) Use the substitution x = sec t to show that

∫ 2

√
2

1

x3
√
x2 − 1

dx =

√
3− 2

8
+

π

24
.

(b) Determine

∫
1

(x+ 2)
√

(x+ 1)(x+ 3)
dx.

(c) Determine

∫
1

(x+ 2)
√
x2 + 4x− 5

dx.

5. (a) Use the substitution u2 = 2x+ 1 to show that, for x > 4,∫
3

(x− 4)
√

2x+ 1
dx = ln

(√
2x+ 1− 3√
2x+ 1 + 3

)
+K,

where K is a constant.

(b) Show that

∫ ln 8

ln 3

2

ex
√

ex + 1
dx =

7

12
+ ln

2

3
.

6. The variables t and x are related by t = x+
√
x2 + 2bx+ c, where b and c are constants and b2 < c. Show that

dx

dt
=
t− x
t+ b

,

and hence integrate
1√

x2 + 2bx+ c
.

Verify by direct integration that your result holds also in the case b2 = c if x+ b > 0 but that your result does
not hold in the case b2 = c if x+ b < 0.

7. (a) Show that, for m > 0, ∫ m

1
m

x2

x+ 1
dx =

(m− 1)3(m+ 1)

2m2
+ lnm.

(b) Show by means of a substitution that∫ m

1
m

1

xn(x+ 1)
dx =

∫ m

1
m

un−1

u+ 1
du.



(c) Evaluate: ∫ 2

1
2

x5 + 3

x3(x+ 1)
dx; and

∫ 2

1

x5 + x3 + 1

x3(x+ 1)
dx.

8. Use the substitution x =
1

t2 − 1
, where t > 1, to show that, for x > 0,∫

1√
x(x+ 1)

dx = 2 ln
(√
x+
√
x+ 1

)
+ c.

[Note: You may use without proof the result

∫
1

t2 − a2
dt =

1

2a
ln

∣∣∣∣ t− at+ a

∣∣∣∣+ constant.]

The section of the curve y =
1√
x
− 1√

x+ 1
between x = 1

8 and x = 9
16 is rotated through 360◦ about the x-axis.

Show that the volume enclosed is 2π ln 5
4 .

9. The number E is defined by E =

∫ 1

0

ex

1 + x
dx.

Show that

∫ 1

0

xex

1 + x
dx = e− 1− E, and evaluate

∫ 1

0

x2ex

1 + x
dx in terms of e and E.

Evaluate also, in terms of E and e as appropriate:∫ 1

0

e
1−x
1+x

1 + x
dx; and

∫ √2

1

ex
2

x
dx.

10. The function f(x) is defined by f(x) =
ex − 1

e− 1
, for x ≥ 0, and the function g(x) is the inverse function to f(x),

so that g(f(x)) = x. Sketch f(x) and g(x) on the same axes.
Verify, by evaluating each integral, that∫ 1

2

0

f(x) dx+

∫ k

0

g(x) dx =
1

2(
√

e + 1)
,

where k =
1√

e + 1
, and explain this result by means of a diagram.

11. Show that, for any integer m, ∫ 2π

0

ex cosmx dx =
1

m2 + 1

(
e2π − 1

)
.

(a) Expand cos(A+B) + cos(A−B). Hence show that∫ 2π

0

ex cosx cos 6xdx = 19
650

(
e2π − 1

)
.

(b) Evaluate

∫ 2π

0

ex sin 2x sin 4x cosxdx.

12. Show that ∫ π
4

0

sin(2x) ln(cosx) dx = 1
4 (ln 2− 1),

and that ∫ π
4

0

cos(2x) ln(cosx) dx = 1
8 (π − ln 4− 2).

Hence evaluate ∫ π
2

π
4

(cos(2x) + sin(2x)) ln(cosx+ sinx) dx.

13. (a) Show that, for n > 0,∫ π
4

0

tann x sec2 xdx =
1

n+ 1
and

∫ π
4

0

secn x tanx dx =
(
√

2)n − 1

n
.

(b) Evaluate the following integrals:∫ π
4

0

x sec4 x tanxdx and

∫ π
4

0

x2 sec2 x tanxdx.


